|
===================================== 〔語彙分解〕的な部分一致の検索結果は以下の通りです。 ・ ー : [ちょうおん] (n) long vowel mark (usually only used in katakana) ・ 数 : [すう, かず] 1. (n,n-suf) number 2. figure ・ 数学 : [すうがく] 【名詞】 1. mathematics 2. arithmetic ・ 学 : [がく] 【名詞】 1. learning 2. scholarship 3. erudition 4. knowledge
代数幾何学では、モチーフ(motive、ときにはフランス語の使いかたに従い motif とすることもある)は、「代数多様体の本質的な部分を表す。今日まで、ピュアモチーフは定義されているが、一方、予想されている混合モチーフは定義されていない。 ピュアモチーフは、三つ組 (X, p, m) で、この X は滑らかな射影多様体、p : X ⊢ X はべき等な(idempotent)対応、m は整数である。(X, p, m) から (Y, q, n) への射(morphism)は、次数 n - m の対応により与えられる。 アレクサンドル・グロタンディーク(Alexander Grothendieck)に従い、混合モチーフに限っては、数学者たちが「普遍的」なコホモロジー論をもたらす適切な定義を求めている。圏論の言葉では、普遍的なコホモロジーは代数的代数的対応の圏で(splitting idempotents)を通した定義を意図していた。しかし、数十年間、標準予想を証明することに失敗して、これを定義することができなかった。現在示されているように、このことは「充分な」多くの射を持つことができない。 一方、モチーフの圏は、1960年代から1970年代にかけて、多く議論された普遍ヴェイユコホモロジーであることが想定されたが、この期待は完全に証明されてはいない。他方、現在は、全く異なる方法より、(motivic cohomology)が、現在、テクニカルな定義が数多くある。 == 導入 == 元来、モチーフの理論は、ベッチコホモロジー、ド・ラームコホモロジー、l-進エタールコホモロジー、(crystalline cohomology)を含む、急速に増えてきたコホモロジー論を統一しようとの試みである。一般的な期待は、 * * = + * = + + のような方程式が、深い意味をもった確固とした数学的基礎として採用できるという期待である。もちろん、上の方程式は、多くの意味で正しいことがすでに知られている。例えば、(CW-complex)では、"+" は胞体(cell)の連結に対応していて、様々なコホモロジー論で "+" は直和に対応している。 他の観点からは、モチーフは、多様体の因子上の有理函数から多様体の周群(Chow group)の上の有理函数への一般化へと繋がっている。モチーフは有理同値以外にも多くのタイプの同値の観点から考えることが可能であるので、一般化は様々な方向で発生する。(adequate equivalence relation)の定義により、構成する同値関係が与えられる。
|